MCQOPTIONS
Saved Bookmarks
This section includes 10 Mcqs, each offering curated multiple-choice questions to sharpen your Computational Fluid Dynamics knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
The Spalart-Allmaras model is best suited for ___________ |
| A. | turbulent jet flows |
| B. | turbulent mixing layers |
| C. | turbulent boundary layers with slight pressure gradients |
| D. | turbulent boundary layers with adverse pressure gradients |
| Answer» E. | |
| 2. |
The rate of dissipation of kinematic eddy viscosity parameter is Cw1 (( frac{ tilde{ }}{ y})^2 f_w ). What is the length scale used here? |
| A. | y |
| B. | ( y)<sup>2</sup> |
| C. | ( frac{C_{w1}}{y} ) |
| D. | ( frac{y}{C_{w1}} ) |
| Answer» B. ( y)<sup>2</sup> | |
| 3. |
The rate of production of the kinematic eddy viscosity parameter is related to ___________ |
| A. | rate of dissipation of kinetic energy |
| B. | turbulence frequency |
| C. | vorticity |
| D. | kinetic energy |
| Answer» D. kinetic energy | |
| 4. |
Expand the Reynolds stress term (- rho overline{u_{i}^{ } u_{j}^{ }} ) for the Spalart-Allmaras model. |
| A. | (- rho overline{u_{i}^{ } u_{j}^{ }} = rho overline{v} f_{v1} ( frac{ partial U_i}{ partial x_i}+ frac{ partial U_j}{ partial x_j}) ) |
| B. | (- rho overline{u_{i}^{ } u_{j}^{ }} = rho overline{v} f_{v1} ( frac{ partial U_i}{ partial x_j}+ frac{ partial U_j}{ partial x_i}) ) |
| C. | (- rho overline{u_{i}^{ } u_{j}^{ }} = 2 rho overline{v} f_{v1} ( frac{ partial U_i}{ partial x_i}+ frac{ partial U_j}{ partial x_j}) ) |
| D. | (- rho overline{u_{i}^{ } u_{j}^{ }} = 2 rho overline{v} f_{v1} ( frac{ partial U_i}{ partial x_j}+ frac{ partial U_j}{ partial x_i}) ) |
| Answer» C. (- rho overline{u_{i}^{ } u_{j}^{ }} = 2 rho overline{v} f_{v1} ( frac{ partial U_i}{ partial x_i}+ frac{ partial U_j}{ partial x_j}) ) | |
| 5. |
Near the wall, the first wall damping function tends to ___________ |
| A. | -1 |
| B. | 1 |
| C. | 0 |
| D. | |
| Answer» D. | |
| 6. |
At high Reynolds numbers, the first wall damping function becomes ___________ |
| A. | -1 |
| B. | 1 |
| C. | 0 |
| D. | |
| Answer» C. 0 | |
| 7. |
The first wall damping function in the Spalart-Allmaras model is a function of ___________ |
| A. | the product of the dynamic eddy viscosity parameter and the dynamic eddy viscosity |
| B. | the ratio of the dynamic eddy viscosity parameter and the dynamic eddy viscosity |
| C. | the product of the kinematic eddy viscosity parameter and the kinematic eddy viscosity |
| D. | the ratio of the kinematic eddy viscosity parameter and the kinematic eddy viscosity |
| Answer» E. | |
| 8. |
In the Spalart-Allmaras model, the dynamic eddy viscosity in terms of the kinematic eddy viscosity parameter () is given by __________ (Note: f 1 is the wall damping function and is the density of flow). |
| A. | f<sub> 1</sub> |
| B. | ( ) f<sub> 1</sub> |
| C. | ( f<sub> 1</sub>) |
| D. | ( f<sub> 1</sub>) |
| Answer» B. ( ) f<sub> 1</sub> | |
| 9. |
The transport equation in the Spalart-Allmaras model is for the transport of ___________ |
| A. | kinematic eddy viscosity parameter |
| B. | kinematic eddy viscosity |
| C. | dynamic eddy viscosity parameter |
| D. | dynamic eddy viscosity |
| Answer» B. kinematic eddy viscosity | |
| 10. |
The Spalart-Allmaras model differs from the RANS equations by ___________ |
| A. | four extra transport equations |
| B. | one extra transport equation |
| C. | two extra transport equations |
| D. | three extra transport equations |
| Answer» C. two extra transport equations | |