MCQOPTIONS
Saved Bookmarks
This section includes 10 Mcqs, each offering curated multiple-choice questions to sharpen your Computational Fluid Dynamics knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
When the finite volume approach is used, if the general form is given asFluxT=FluxC C+FluxC C +FluxV |
| A. | nThe superscript o indicates the older time step, the value of FluxC while using the second-order upwind Euler scheme is ________ |
| B. | ( frac{3 rho_C^o V_C}{2 Delta t} ) |
| C. | (- frac{3 rho_C^o V_C}{2 Delta t} ) |
| D. | ( frac{2 rho_C^o V_C}{ Delta t} ) |
| E. | (- frac{2 rho_C^o V_C}{ Delta t} ) |
| Answer» E. (- frac{2 rho_C^o V_C}{ Delta t} ) | |
| 2. |
The numerical dispersion term of the second-order upwind Euler scheme is of ____________ |
| A. | third-order |
| B. | second-order |
| C. | first-order |
| D. | no dispersion |
| Answer» B. second-order | |
| 3. |
How many numerical diffusion terms does the second-order upwind Euler scheme have? |
| A. | Infinity |
| B. | No diffusion term |
| C. | One term |
| D. | Two terms |
| Answer» C. One term | |
| 4. |
Which of these time-steps are needed to approximate the value at time-step ( frac{ Delta t}{2} ) using the second-order upwind Euler scheme for finite volume approach? |
| A. | t- ( frac{ Delta t}{2} ) and t-2 t |
| B. | t and t- t |
| C. | t- t and t-2 t |
| D. | t and t-2 t |
| Answer» D. t and t-2 t | |
| 5. |
What is the equivalent of ( C C)t+ t/2 using the second-order upwind Euler scheme for finite volume approach? |
| A. | ( frac{3}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+( <sub>C</sub> <sub>C</sub>)<sup>t- t</sup> |
| B. | ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+ ( frac{1}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t- t</sup> |
| C. | ( frac{3}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+ ( frac{1}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t- t</sup> |
| D. | ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+ ( frac{1}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t- t</sup> |
| Answer» D. ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+ ( frac{1}{2} ) ( <sub>C</sub> <sub>C</sub>)<sup>t- t</sup> | |
| 6. |
Which of these terms cause instability in the Crank-Nicolson scheme when used for finite volume approach? |
| A. | Anti-diffusion term |
| B. | Anti-dispersive term |
| C. | Diffusion term |
| D. | Dispersive term |
| Answer» E. | |
| 7. |
The results using the Crank-Nicolson scheme for finite volume approach can be reformulated using the ________ |
| A. | implicit first-order Euler scheme |
| B. | implicit and explicit first-order Euler schemes |
| C. | explicit first-order Euler scheme |
| D. | central difference scheme |
| Answer» C. explicit first-order Euler scheme | |
| 8. |
The stability of the Crank-Nicolson scheme for finite volume approach is constrained by ________ |
| A. | CFL number |
| B. | Peclet number |
| C. | Time-step size |
| D. | Spatial grid size |
| Answer» B. Peclet number | |
| 9. |
Which of these time-steps are used to approximate the value at time-step t- ( frac{ Delta t}{2} ) using the Crank-Nicolson scheme for finite volume approach? |
| A. | t and t+ t |
| B. | t and t- t |
| C. | t and t- ( frac{ Delta t}{2} ) |
| D. | t and t+ ( frac{ Delta t}{2} ) |
| Answer» C. t and t- ( frac{ Delta t}{2} ) | |
| 10. |
What is the equivalent of ( C C)t+ t/2 using the Crank-Nicolson scheme for finite volume approach? |
| A. | ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+ ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t+ t</sup> |
| B. | ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+( <sub>C</sub> <sub>C</sub>)<sup>t+ t</sup> |
| C. | ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>-( <sub>C</sub> <sub>C</sub>)<sup>t+ t</sup> |
| D. | ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t</sup> ( frac{1}{2} )( <sub>C</sub> <sub>C</sub>)<sup>t+ t</sup> |
| Answer» B. ( <sub>C</sub> <sub>C</sub>)<sup>t</sup>+( <sub>C</sub> <sub>C</sub>)<sup>t+ t</sup> | |