Explore topic-wise MCQs in UPSEE.

This section includes 395 Mcqs, each offering curated multiple-choice questions to sharpen your UPSEE knowledge and support exam preparation. Choose a topic below to get started.

201.

Let g(x) = f(x) + f(1 – x) and f'(x) < 0 for all x ∈ (0,1). Then the interval in which g(x) is increasing is

A. (1/2, 1)
B. (0, 1/2)
C. (0, 1/2) ∪ (1/2, 1)
D. none of these
Answer» B. (0, 1/2)
202.

If \(\int \frac{dx}{{{\left( {{x}^{2}}-2x+10 \right)}^{2}}}=A\left( ta{{n}^{-1}}\left( \frac{x-1}{3} \right)+\frac{f\left( x \right)}{{{x}^{2}}-2x+10} \right)+C\) where C is a constant of integration, then:

A. \(A = \frac{1}{{54}}{\rm{\;and\;}}f\left( x \right) = 3\left( {x - 1} \right)\)
B. \(A = \frac{1}{{81}}{\rm{\;and\;}}f\left( x \right) = 3\left( {x - 1} \right)\)
C. \(A = \frac{1}{{27}}{\rm{\;and\;}}f\left( x \right) = 9\left( {x - 1} \right)\)
D. \(A = \frac{1}{{54}}{\rm{\;and\;}}f\left( x \right) = 9{(x - 1)^2}\)
Answer» B. \(A = \frac{1}{{81}}{\rm{\;and\;}}f\left( x \right) = 3\left( {x - 1} \right)\)
203.

If \(\begin{array}{l} \overrightarrow a = 2\widehat i - 2\widehat j - \widehat k\\ \end{array}\)and \(\begin{array}{l} \overrightarrow b = 3\widehat i + 2\widehat j + \widehat k\\ \end{array}\)then the projection of \(\begin{array}{l} \overrightarrow b \\ \end{array}\)on \(\begin{array}{l} \overrightarrow a \\ \end{array}\)is

A. \(\begin{array}{l} \frac{1}{3}\\ \end{array}\)
B. 1
C. \(\begin{array}{l} \frac{1}{{\sqrt {14} }}\\ \end{array}\)
D. \(\begin{array}{l} \frac{{11}}{3}\\ \end{array}\)
Answer» B. 1
204.

Evaluate \(\int^1_0 x(1 - x)^n dx\)

A. \(\frac {-1}{(n + 1)(n + 2)}\)
B. \(\frac {1}{(n + 1)(n + 2)}\)
C. (n + 1)(n + 2)
D. (n - 1)(n - 2)
Answer» C. (n + 1)(n + 2)
205.

If x = A cos 4t + B sin 4t, then \(\dfrac{d^2x}{dt^2}\) is equal to -

A. -16 x
B. 16 x
C. x
D. -x
Answer» B. 16 x
206.

If sin y + e-x cos y = c, then \(\dfrac{dy}{dx}\)at (1, π) is:

A. -x cos y
B. sin y - x cos y
C. e
D. sin y
Answer» D. sin y
207.

At x = 0, the function f(x) = |x| has

A. A minimum
B. A maximum
C. A point of inflexion
D. neither a maximum nor minimum
Answer» B. A maximum
208.

Consider a cube defined byx, y, z ∈ [1, 3]If vector, \(\vec A = 2{x^2}y{\hat a_x} + 3{x^2}{y^2}{\hat a_y}\)∇.A at the center of the cube will be

A. 72
B. 64
C. 60
D. 48
Answer» C. 60
209.

If \(\begin{array}{l} H = {\tan ^{ - 1}}\frac{x}{y}\\ \end{array}\), x = u + v, y = u - v then \(\begin{array}{l} \frac{{\partial H}}{{\partial V}}\\ \end{array}\)is

A. \(\frac{u}{{\mathop u\nolimits^2 + \mathop v\nolimits^2 }}\)
B. \(\frac{{ - v}}{{\mathop u\nolimits^2 + \mathop v\nolimits^2 }}\)
C. \(\frac{u}{{\mathop x\nolimits^2 + \mathop y\nolimits^2 }}\)
D. \(\frac{{ - 2v}}{{\mathop x\nolimits^2 + \mathop y\nolimits^2 }}\)
Answer» B. \(\frac{{ - v}}{{\mathop u\nolimits^2 + \mathop v\nolimits^2 }}\)
210.

If \({\rm{s}} = \sqrt {{{\rm{t}}^2} + 1} \), then \(\frac{{{{\rm{d}}^2}{\rm{s}}}}{{{\rm{d}}{{\rm{t}}^2}}}\) is equal to

A. \(\frac{1}{{\rm{s}}}\)
B. \(\frac{1}{{{{\rm{s}}^2}}}\)
C. \(\frac{1}{{{{\rm{s}}^3}}}\)
D. \(\frac{1}{{{{\rm{s}}^4}}}\)
Answer» D. \(\frac{1}{{{{\rm{s}}^4}}}\)
211.

If \(f\left( x \right) = \frac{{2{x^2} - 7x + 3}}{{5{x^2} - 12x - 9}}\) , then \(\begin{array}{*{20}{c}} {limf\left( x \right)}\\ {x \to 3} \end{array}\) will be

A. \(\frac{{ - 1}}{3}\)
B. \(\frac{5}{{18}}\)
C. 0
D. \(\frac{2}{5}\)
Answer» C. 0
212.

Maximum value of (1/x)x is

A. 1
B. e - e
C. e1/e
D. 1/e
Answer» D. 1/e
213.

Determine \({\left. {\frac{{dy}}{{dx}}} \right|_{x = 1}}\) wheny = x2 + 2x + 15

A. 8
B. 4
C. 15
D. 2
Answer» C. 15
214.

Let \(f\left( x \right) = x{e^{ - x}}\). The maximum value of the function in the interval (\(0,\;\infty\)) is

A. \({e^{ - 1}}\)
B. \(e\)
C. \(1\;-\;{e^{ - 1}}\)
D. \(1\; + \;{e^{ - 1}}\)
Answer» B. \(e\)
215.

Consider the following statements:1. The function f(x) = ln x increases in the interval (0, ∞).2. The function f(x) = tan x increases in the interval \(\rm \left(- \dfrac{\pi}{2}, \dfrac{\pi}{2}\right)\) .Which of the above statements is / are correct?

A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2
Answer» D. Neither 1 nor 2
216.

Let y = y(x) be the solution of the differential equation, \({\rm{}}{\left( {{{\rm{x}}^2} + 1} \right)^2}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + 2{\rm{x}}\left( {{{\rm{x}}^2} + 1} \right){\rm{y}} = 1\) is such that y(0) = 0. If \(\sqrt {\rm{a}} {\rm{\;y}}\left( 1 \right) = \frac{{\rm{\pi }}}{{32}},{\rm{\;then\;the}}\) value of ‘a’ is:

A. \(\frac{1}{4}\)
B. \(\frac{1}{2}\)
C. 1
D. \(\frac{1}{{16}}\)
Answer» E.
217.

\(\mathop \smallint \limits_0^{\pi /2} {\sin ^2}xdx =\)

A. π/4
B. π/5
C. π/2
D. π/6
Answer» B. π/5
218.

If 2î + 4ĵ - 5k̂ and î + 2ĵ + 3k̂ are two different sides of rhombus. Find the length of diagonals.

A. 7, \(\sqrt{69}\)
B. 6, \(\sqrt{59}\)
C. 5, \(\sqrt{65}\)
D. 8, \(\sqrt{45}\)
Answer» B. 6, \(\sqrt{59}\)
219.

A condition that x3 + ax2 + bx + c may have no extremum is

A. a2 ≥ 3b
B. b2 < 3b
C. a2 < 3b
D. b2 ≥ 3b
Answer» D. b2 ≥ 3b
220.

Let f(x) and g(x) be twice differentiable functions on [0, 2] satisfying f’’(x) = g”(x), f’(1) = 4, g’(1) = 6, f(2) = 3 and g(2) = 9. Then what is f(x) – g(x) at x = 4 equal to?

A. -10
B. -6
C. -4
D. 2
Answer» B. -6
221.

First Order Differentiation of any function at a point is

A. Slope of Perpendicular to function at that point
B. Slope of tangent to function at that point
C. Value of function at that point
D. None of these
Answer» C. Value of function at that point
222.

If a continuously differentiable vector function is the gradient of a scalar function, then its curl is

A. infinite
B. indeterminate
C. unity
D. zero
Answer» E.
223.

Given the vector field \(A = 5\;{x^2}\left( {\sin \left( {\frac{{\pi x}}{2}} \right)} \right){a_x},\) find div A at x = 1.

A. 5
B. 20
C. 10
D. 15
Answer» D. 15
224.

If \(\displaystyle\int \dfrac{(x - 1)^2}{(x^2 + 1)^2} dx = tan^{-1} x + g(x) + k,\)the g(x) =

A. None of these
B. \(\dfrac{1}{2(x^2+1)}\)
C. \(\dfrac{1}{(x^2+1)}\)
D. \(tan^{-1} \dfrac{x}{2}\)
Answer» D. \(tan^{-1} \dfrac{x}{2}\)
225.

If \(y = {\tan ^{ - 1}}\left( {\frac{{5 - 2\tan \sqrt x }}{{2 + 5\tan \sqrt x }}} \right)\) then what is \(\frac{{dy}}{{dx}}\) equal to?

A. \( - \frac{1}{{2\sqrt x }}\)
B. 1
C. -1
D. \(\frac{1}{{2\sqrt x }}\)
Answer» B. 1
226.

Find the point at which the tangent to the curve y = \(\rm \sqrt{4x-3}-1\) has its slope \(\dfrac{2}{3}\).

A. (3, 3)
B. (3, 2)
C. (2, 3)
D. (2, 2)
Answer» C. (2, 3)
227.

If ∫ cos x cos 2x cos 5x dx = A1 sin 2x + A2 sin 4x + A3 sin 6x + A4 sin 8x + c, then the values of A1, A2, A3, A4 are

A. \(A_1 = \frac 1 2,\;A_2 = \frac 1 4,\; A_3 = \frac 1 6,\; A_4 = \frac 1 8\)
B. \(A_1 = \frac 1 8,\;A_2 = \frac 1 {16},\; A_3 = \frac 1 {24},\; A_4 = \frac 1 {32}\)
C. \(A_1 = \frac 1 6,\;A_2 = \frac 1 {12},\; A_3 = \frac 1 {18},\; A_4 = \frac 1 {24}\)
D. \(A_1 = \frac 1 4,\;A_2 = \frac 1 8,\; A_3 = \frac 1 {12},\; A_4 = \frac 1 {16}\)
Answer» C. \(A_1 = \frac 1 6,\;A_2 = \frac 1 {12},\; A_3 = \frac 1 {18},\; A_4 = \frac 1 {24}\)
228.

If the radius of the circle changes at the rate of \(\rm-\frac{2}{\pi}\ m/sec\), at what rate does the circle's area change when the radius is 10 m?

A. 40 m2/sec
B. 30 m2/sec
C. -30 m2/sec
D. -40 m2/sec
Answer» E.
229.

Find the area bounded by the line y = 3 - x, the parabola y = x2 - 9 and x ≥ -4, y ≥ 0.

A. \(\dfrac{7}{2}\)
B. \(\dfrac{11}{2}\)
C. \(\dfrac{9}{2}\)
D. None of these
Answer» E.
230.

Let y = 3x2 + 2. If x changes from 10 to 10.1, then what is the total change in y?

A. 4.71
B. 5.23
C. 6.03
D. 8.01
Answer» D. 8.01
231.

A vector P is given by \({\rm{\vec P}} = {{\rm{x}}^3}{\rm{y}}{{\rm{\vec a}}_{\rm{x}}} - {{\rm{x}}^2}{{\rm{y}}^2}{{\rm{\vec a}}_{\rm{y}}} - {{\rm{x}}^2}{\rm{yz}}{{\rm{\vec a}}_{\rm{z}}}\) . Which one of the following statements is TRUE?

A. P is solenoidal, but not irrotational
B. P is irrotational, but not solenoidal
C. P is neither solenoidal nor irrotational
D. P is both solenoidal and irrotational
Answer» B. P is irrotational, but not solenoidal
232.

Find the equations of the normals to the curve 3x2 - y2 = 8, parallel to the line x + 3y = 4 ?

A. x - 3y - 8 = 0 and ​x + 3y + 8 = 0
B. x + 3y - 8 = 0 and ​x + 3y + 8 = 0
C. x + 3y - 8 = 0 and ​- x + 3y + 8 = 0
D. None of these
Answer» C. x + 3y - 8 = 0 and ​- x + 3y + 8 = 0
233.

Integral of sec2 x with respect to sec x is

A. tan x + C
B. sec x + C
C. \(\rm\frac{{ta{n^3}x}}{{3 }} + c\)
D. \(\rm\frac{{sec{^3}x}}{{3 }} + c\)
Answer» E.
234.

A cylindrical jar without a lid has to be constructed using a given surface area of a metal sheet. If the capacity of the jar is to be maximum, then the diameter of the jar must be k times the height of the jar. The value of k is

A. 1
B. 2
C. 3
D. 4
Answer» C. 3
235.

In the Taylor series expansion of ex + sin x about the point x = π, the coefficient of (x – π)2 is

A.
B. 0.5 eπ
C. eπ+1
D. eπ-1
Answer» C. eπ+1
236.

\(\lim x \to \;\infty \;{x^{\frac{1}{x}}}\) is

A.
B. 0
C. 1
D. Not defined
Answer» D. Not defined
237.

Minimum value of 27cos x 81sin x

A. -5
B. 1/5
C. 1/243
D. 1/27
Answer» D. 1/27
238.

If the interval of differencing is 1, then the value of Δ sin 4 x will be

A. 2(sin 2) (cos 2 (2x + 1))
B. 2(sin 2) (sin 2 (x + 1))
C. 2(cos 4 ) (sin 2 (x + 2))
D. 2(sin 2) (cos 2 (2x - 1))
Answer» B. 2(sin 2) (sin 2 (x + 1))
239.

Consider the functionsI. e-xII. x2 – sin xIII. \(\sqrt {{x^3} + 1} \)Which of the above functions is/are increasing everywhere in [0, 1]?

A. III only
B. II only
C. II and III only
D. I and III only
Answer» B. II only
240.

In which of the following cases the divergence of the electric field is zero

A. When electric field flows uniform through open tubes
B. When electric field is released from the tube
C. When electric field is within the closed tube
D. None of above
Answer» D. None of above
241.

If eθϕ = c + 4θϕ, where c is an arbitrary constant and ϕ is a function of θ, then what is ϕ dθ equal to?

A. θ dϕ
B. - θdϕ
C. 4θ dϕ
D. -4θ dϕ
Answer» C. 4θ dϕ
242.

\(\displaystyle\lim_{x \rightarrow 0} \dfrac{\sqrt{1+x}-\sqrt{1-x}}{x}\) is given by

A. 0
B. –1
C. 1
D. \(\frac{1}{2}\)
Answer» D. \(\frac{1}{2}\)
243.

If \(\rm \displaystyle\int\dfrac{xe^x}{\sqrt{1+e^x}}dx=f(x)\sqrt{1+e^x}- \rm 2 \log \frac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1}+C\), then f(x) is

A. 2x - 1
B. 2x - 4
C. x + 4
D. x - 4
Answer» C. x + 4
244.

If \(\mathop \smallint \nolimits_0^{\frac{\pi }{2}} \left( {\frac{{cotx}}{{cotx + cosecx}}} \right)dx = m\left( {\pi + n} \right)\), then m⋅n is equal to:

A. \(-\frac{1}{2}\)
B. 1
C. 1/2
D. -1
Answer» E.
245.

Consider a rotating disk cam and a translating roller follower with zero offset. Which one of the following pitch curves, parameterized by t, lying in the interval 0 to 2π, is associated with the maximum translation of the follower during one full rotation of the cam rotating about the center at (x, y) = (0, 0)?

A. x(t) = cos t, y(t) = sin t
B. x(t) = cos t, y(t) = 2 sin t
C. x(t) = ½ + cos t, y(t) = 2 sin t
D. x(t) = ½ + cost t, y(t) = sin t
Answer» D. x(t) = ½ + cost t, y(t) = sin t
246.

If \(\smallint {x^5}{e^{ - {x^2}}}dx = g\left( x \right){e^{ - {x^2}}} + c\), where c is a constant of integration, then g(-1) is equal to:

A. -1
B. 1
C. \( - \frac{5}{2}\)
D. \( - \frac{1}{2}\)
Answer» D. \( - \frac{1}{2}\)
247.

If x = et cost and y = et sint, then what is \(\dfrac{dx}{dy}\) at t = 0 equal to?

A. 0
B. 1
C. 2e
D. -1
Answer» C. 2e
248.

Let the slope of the curve y = cos-1 (sin x) be tan θ, then the value of θ in the interval (0, π) is

A. π/6
B. 3π/4
C. π/4
D. π/2
Answer» C. π/4
249.

Let n ≥ 2 be a natural number and \(0 < \theta < \frac{\pi }{2}.{\rm{\;Then\;}}\smallint \left( {\frac{{{{\left( {{\rm{si}}{{\rm{n}}^n}\theta - {\rm{sin}}\theta } \right)}^{\frac{1}{n}}}{\rm{cos}}\theta }}{{{\rm{si}}{{\rm{n}}^{n + 1}}\theta }}} \right)d\theta\) is equal to:(Where C is a constant of integration)

A. \(\frac{{\rm{n}}}{{{{\rm{n}}^2} - 1}}{\left( {1 - \frac{1}{{{\rm{si}}{{\rm{n}}^{{\rm{n}} - 1}}\theta }}} \right)^{\frac{{{\rm{n}} + 1}}{{\rm{n}}}}} + {\rm{C}}\)
B. \(\frac{{\rm{n}}}{{{{\rm{n}}^2} + 1}}{\left( {1 - \frac{1}{{{\rm{si}}{{\rm{n}}^{{\rm{n}} - 1}}{\rm{\theta }}}}} \right)^{\frac{{{\rm{n}} + 1}}{{\rm{n}}}}} + {\rm{C}}\)
C. \(\frac{{\rm{n}}}{{{{\rm{n}}^2} - 1}}{\left( {1 + \frac{1}{{{\rm{si}}{{\rm{n}}^{{\rm{n}} - 1}}{\rm{\theta }}}}} \right)^{\frac{{{\rm{n}} + 1}}{{\rm{n}}}}} + {\rm{C}}\)
D. \(\frac{{\rm{n}}}{{{{\rm{n}}^2} - 1}}{\left( {1 - \frac{1}{{{\rm{si}}{{\rm{n}}^{{\rm{n}} + 1}}\theta }}} \right)^{\frac{{{\rm{n}} + 1}}{{\rm{n}}}}} + {\rm{C}}\)
Answer» B. \(\frac{{\rm{n}}}{{{{\rm{n}}^2} + 1}}{\left( {1 - \frac{1}{{{\rm{si}}{{\rm{n}}^{{\rm{n}} - 1}}{\rm{\theta }}}}} \right)^{\frac{{{\rm{n}} + 1}}{{\rm{n}}}}} + {\rm{C}}\)
250.

Evaluate the following integral:\(\smallint \cos {\rm{x}}{{\rm{e}}^{\sin {\rm{x}}}}{\rm{dx}}\)

A. \({{\rm{e}}^{\sin {\rm{x}}}} + {\rm{C}}\)
B. \({{\rm{e}}^{\cos {\rm{x}}}} + {\rm{C}}\)
C. \(\frac{{\cos {\rm{x}}}}{{{{\rm{e}}^{\sin {\rm{x}}}}}} + {\rm{C}}\)
D. \(\frac{{\sin {\rm{x}}}}{{{{\rm{e}}^{\cos {\rm{x}}}}}} + {\rm{C}}\)
Answer» B. \({{\rm{e}}^{\cos {\rm{x}}}} + {\rm{C}}\)