MCQOPTIONS
Saved Bookmarks
This section includes 180 Mcqs, each offering curated multiple-choice questions to sharpen your Control System knowledge and support exam preparation. Choose a topic below to get started.
| 151. |
Consider a unity feedback control system with open-loop transfer function |
| A. | zero |
| B. | K |
| C. | 1/ K |
| D. | |
| Answer» B. K | |
| 152. |
A system is represented by |
| A. | t u(t) |
| B. | 2t u (t) |
| C. | 3t u (t) |
| D. | 4t u (t) |
| Answer» C. 3t u (t) | |
| 153. |
What will be the closed loop transfer function of a unity feedback control system whose step response is given by |
| A. | <table><tr><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>100 K</center></td><td rowspan="2"> </td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 16s + 100</td></tr></table> |
| B. | <table><tr><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10 K</center></td><td rowspan="2"> </td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 16s + 100</td></tr></table> |
| C. | <table><tr><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td><td rowspan="2"> </td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 16s + 100</td></tr></table> |
| D. | <table><tr><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10 K</center></td><td rowspan="2"> </td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 8s + 10</td></tr></table> |
| Answer» B. <table><tr><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>10 K</center></td><td rowspan="2"> </td></tr><tr><td style="text-align: center;">s<sup>2</sup> + 16s + 100</td></tr></table> | |
| 154. |
A unity feedback control system has a forward path transfer function equal to |
| A. | 0 sec |
| B. | 0.56 sec |
| C. | 5.6 sec |
| D. | infinity |
| Answer» E. | |
| 155. |
Consider a system shown in the given figure |
| A. | 1 + t |
| B. | 1 t |
| C. | 1 + 2t |
| D. | 1 2t |
| Answer» D. 1 2t | |
| 156. |
In the derivative error compensation, damping |
| A. | decreases and settling time decreases |
| B. | increases and settling time increases |
| C. | decreases and settling time increases |
| D. | increases and settling time decreases |
| Answer» E. | |
| 157. |
The forward-path transfer function of a unity feedback system is |
| A. | K > -1 |
| B. | <table><tr><td rowspan="2">K < </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>3</center></td><td rowspan="2"></td></tr><tr><td style="text-align: center;">4</td></tr></table> |
| C. | <table><tr><td rowspan="2">-1 < K < </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>3</center></td><td rowspan="2"></td></tr><tr><td style="text-align: center;">4</td></tr></table> |
| D. | marginal stable |
| Answer» E. | |
| 158. |
The Nyquist plot of a loop transfer funct ion G(j ) H(j ) of a system encloses the ( 1, j0) point. The gain margin of the system is |
| A. | less than zero |
| B. | zero |
| C. | greater than zero |
| D. | infinity |
| Answer» B. zero | |
| 159. |
Consider the following statements regarding timedomain analysis of a control system : |
| A. | 1 and 2 are correct |
| B. | 1 and 3 are correct |
| C. | 2 and 3 are correct |
| D. | 1, 2 and 3 are correct |
| Answer» C. 2 and 3 are correct | |
| 160. |
The open-loop transfer function of a unity feedback control system is |
| A. | T > 0 |
| B. | 0 < T < 3 |
| C. | T > 5 |
| D. | 3 < T < 4 |
| Answer» D. 3 < T < 4 | |
| 161. |
Consider the following polynomials : |
| A. | 1 and 3 |
| B. | 2 and 3 |
| C. | 1 and 2 |
| D. | 1, 2 and 3 |
| Answer» D. 1, 2 and 3 | |
| 162. |
The number of roots of s |
| A. | zero |
| B. | one |
| C. | two |
| D. | three |
| Answer» B. one | |
| 163. |
The close-loop transfer function of a control system is given by |
| A. | <table><tr><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td><td rowspan="2">cos t</td></tr><tr><td style="text-align: center;"> <span style=" text-decoration: overline;">2</span></td></tr></table> |
| B. | 1 |
| C. | <table><tr><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td><td rowspan="2">sin t</td></tr><tr><td style="text-align: center;"> <span style=" text-decoration: overline;">2</span></td></tr></table> |
| D. | <table><tr><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>1</center></td><td rowspan="2">sin </td><td rowspan="2"><img src="https://www.indiabix.com/_files/images/data-interpretation/common/15-sym-oparen-h1.gif"></td><td rowspan="2">t - </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center> </center></td><td rowspan="2"><img src="https://www.indiabix.com/_files/images/data-interpretation/common/15-sym-cparen-h1.gif"></td></tr><tr><td style="text-align: center;"> <span style=" text-decoration: overline;">2</span></td><td style="text-align: center;">4</td></tr></table> |
| Answer» E. | |
| 164. |
The phase margin of a system with the open-loop transfer function |
| A. | 0 |
| B. | 63.4 |
| C. | 90 |
| D. | |
| Answer» E. | |
| 165. |
The position and velocity error coefficients for the system of transfer function |
| A. | zero and zero |
| B. | zero and infinity |
| C. | 50 and zero |
| D. | 50 and infinity |
| Answer» D. 50 and infinity | |
| 166. |
For a feedback control system of type 2, the steady state error for a ramp input is |
| A. | infinite |
| B. | constant |
| C. | zero |
| D. | indeterminate |
| Answer» D. indeterminate | |
| 167. |
The system with the open loop transfer function G(s) H(s) = 1 has a gain margin of s(s2 + s + 1) |
| A. | 6 dB |
| B. | 0 dB |
| C. | 3.5 dB |
| D. | 6 dB |
| Answer» C. 3.5 dB | |
| 168. |
An electromechanical closed-loop control system has the following characteristic equation : |
| A. | K = 0.528 |
| B. | K = 2 |
| C. | K = 0 |
| D. | K = 2.58 |
| Answer» B. K = 2 | |
| 169. |
None of the poles of a linear control system lie in the right half of s-plane. For a bounded input, the output of this system |
| A. | is always bounded |
| B. | could be unbounded |
| C. | always tends to zero |
| D. | none of these |
| Answer» C. always tends to zero | |
| 170. |
Consider a feedback control system with loop transfer function |
| A. | zero |
| B. | one |
| C. | two |
| D. | three |
| Answer» C. two | |
| 171. |
In the Bode-plot of a unit y feedback cont rol system, the value of phase of G (j ) at the gain cross over frequency is 125 . The phase margin of the system is |
| A. | 125 |
| B. | 55 |
| C. | 55 |
| D. | 125 |
| Answer» D. 125 | |
| 172. |
The characteristic equation of a closed-loop system is given by |
| A. | 0 < K < 10 |
| B. | K > 10 |
| C. | < K < |
| D. | 0 < K < 20 |
| Answer» B. K > 10 | |
| 173. |
A linear discrete-time system has t he characteristic equation, z |
| A. | is stable |
| B. | is marginally stable |
| C. | is unstable |
| D. | stability cannot be assessed from the given information |
| Answer» B. is marginally stable | |
| 174. |
The open loop transfer function of a system is |
| A. | <img src="http://images.interviewmania.com/wp-content/uploads/2019/11/as-897.jpg"> |
| B. | <img src="http://images.interviewmania.com/wp-content/uploads/2019/11/as-898.jpg"> |
| C. | <img src="http://images.interviewmania.com/wp-content/uploads/2019/11/as-899.jpg"> |
| D. | <img src="http://images.interviewmania.com/wp-content/uploads/2019/11/as-900.jpg"> |
| Answer» C. <img src="http://images.interviewmania.com/wp-content/uploads/2019/11/as-899.jpg"> | |
| 175. |
A system has a complex conjugate root pair of multiplicity two or more in its characteristic equation. The impulse response of the system will be |
| A. | a sinusoidal oscillation which decays exponentially; the system is therefore stable. |
| B. | a sinusoidal oscillation with time multiplier; the system is therefore unstable. |
| C. | a sinusoidal oscillation which rises exponentially with time; the system is therefore unstable. |
| D. | a dc term and harmonic oscillation; the system therefore becomes limitingly stable. |
| Answer» C. a sinusoidal oscillation which rises exponentially with time; the system is therefore unstable. | |
| 176. |
The unstable system is |
| A. | <table><tr><td rowspan="2">G(s) H(s) = </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td><td rowspan="2"> ; K > 0</td></tr><tr><td style="text-align: center;">(T<sub>1</sub>s + 1)(T<sub>2</sub>s + 1)</td></tr></table> |
| B. | <table><tr><td rowspan="2">G(s) H(s) = </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K(s + 1)</center></td><td rowspan="2"> ; K > 91</td></tr><tr><td style="text-align: center;">s<sup>2</sup>(s + 4)(s + 5)</td></tr></table> |
| C. | <table><tr><td rowspan="2">G(s) H(s) = </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K(s + 2)</center></td><td rowspan="2"> ; K > 2</td></tr><tr><td style="text-align: center;">(s + 1)(s - 3)</td></tr></table> |
| D. | <table><tr><td rowspan="2">G(s) H(s) = </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K</center></td><td rowspan="2"> ; -1 < K < 2</td></tr><tr><td style="text-align: center;">(Ts + 1)<sup>3</sup></td></tr></table> |
| Answer» C. <table><tr><td rowspan="2">G(s) H(s) = </td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>K(s + 2)</center></td><td rowspan="2"> ; K > 2</td></tr><tr><td style="text-align: center;">(s + 1)(s - 3)</td></tr></table> | |
| 177. |
The feedback system with characteristic equation |
| A. | stable for all value of K |
| B. | stable for positive value of K |
| C. | stable for > K > 7.0 |
| D. | unstable for all values of K |
| Answer» E. | |
| 178. |
The number of roots of the equation 2s |
| A. | zero |
| B. | one |
| C. | two |
| D. | three |
| Answer» D. three | |
| 179. |
What is the unit step response of a unity feedback control system having forward path transfer |
| A. | Overdamped |
| B. | Critically damped |
| C. | Underdamped |
| D. | Undamped oscillatory |
| Answer» E. | |
| 180. |
The transfer function of the system described by |
| A. | <table><tr><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>(s + 2)</center></td><td rowspan="2"> </td></tr><tr><td style="text-align: center;">(s<sup>2</sup> + s)</td></tr></table> |
| B. | <table><tr><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>(s + 1)</center></td><td rowspan="2"> </td></tr><tr><td style="text-align: center;">(s<sup>2</sup> + s)</td></tr></table> |
| C. | <table><tr><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>s</center></td><td rowspan="2"> </td></tr><tr><td style="text-align: center;">(s<sup>2</sup> + s)</td></tr></table> |
| D. | <table><tr><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>2s</center></td><td rowspan="2"> </td></tr><tr><td style="text-align: center;">(s<sup>2</sup> + s)</td></tr></table> |
| Answer» B. <table><tr><td rowspan="2"></td><td style="border-bottom:1px solid #000000;vertical-align:bottom;padding-bottom:2px;"><center>(s + 1)</center></td><td rowspan="2"> </td></tr><tr><td style="text-align: center;">(s<sup>2</sup> + s)</td></tr></table> | |